Similarity-based Heterogeneous Neural Networks

نویسندگان

  • Lluís A. Belanche Muñoz
  • Julio Jose Valdes Ramos
چکیده

This research introduces a general class of functions serving as generalized neuron models to be used in artificial neural networks. They are cast in the common framework of computing a similarity function, a flexible definition of a neuron as a pattern recognizer. The similarity endows the model with a clear conceptual view and leads naturally to handle heterogeneous information, in the form of mixtures of continuous numbers (crisp or fuzzy), linguistic information and discrete quantities (ordinal, nominal and finite sets). Missing data are also explicitly considered. The absence of coding schemes and the precise computation attributed to the neurons makes the networks highly interpretable. The resulting heterogeneous neural networks are trained by means of a special-purpose genetic algorithm. The cooperative integration of different soft computing techniques (neural networks, evolutionary algorithms and fuzzy sets) makes these networks capable of learning from non-trivial data sets with a remarkable effectiveness, comparable or superior to that of classical models. This claim is demonstrated by a set of experiments on benchmarking realworld data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Inputs and Missing Data in Similarity-Based Heterogeneous Neural Networks

Fuzzy heterogeneous networks are recently introduced feed-forward neural network models composed of neurons of a general class whose inputs and weights are mixtures of continuous variables (crisp and/or fuzzy) with discrete quantities, also admitting missing data. These networks have net input functions based on similarity relations between the inputs to and the weights of a neuron. They thus a...

متن کامل

Similarity-based Heterogeneous Neuron Models

This paper introduces a general class of neuron models, accepting heterogeneousinputs in the form of mixtures of continuous (crisp or fuzzy) numbers, linguistic information, and discrete (either ordinal or nominal) quantities, with provision also for missing information. Their internal stimulation is based on an explicit similarity relation between the input and weight tuples (which are also he...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Prediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin

The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...

متن کامل

Improving the quality of images synthesized by discrete cosines transform – regression based method using principle component analysis

  Purpose: Different views of an individuals’ image may be required for proper face recognition.   Recently, discrete cosines transform (DCT) based method has been used to synthesize virtual   views of an image using only one frontal image. In this work the performance of two different   algorithms was examined to produce virtual views of one frontal image.   Materials and Methods: Two new meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Engineering Letters

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2007